
Google AI-ML Course Internship Completion Report

1. Introduction

2. Course Overview

The Google AI-ML course was designed to provide comprehensive knowledge of neural

networks, object detection, image classification, and product image search using TensorFlow.

The course was divided into multiple units, with each unit involving hands-on labs and

quizzes. Successful completion of each unit was rewarded with a badge.

Units Completed:

3. Steps to Access and Complete the Units

Unit 1: Program neural networks with TensorFlow

Project
Overview

Internship Name: Google AI-ML Course
Duration: [Start Date] to [End Date]
Platform: Google Developers
Objective: The goal of this course was to gain proficiency in AI and ML concepts through
practical coding exercises, quizzes, and interactive labs using TensorFlow and other tools.
This report outlines the key units completed, skills acquired, and badges earned.

UNIT-1: Program neural networks with TensorFlow
UNIT-2: Get started with object detection
UNIT-3: Go further with object detection
UNIT-4: Get started with product image search
UNIT-5: Go further with product image search
UNIT-6: Go further with image classification

Link: Program neural networks with TensorFlow
Completed all stages, followed by a quiz.

https://developers.google.com/learn/pathways/tensorflow#codelab

Unit 2: Get started with object detection

Unit 3: Go further with object detection

Unit 4: Get started with product image search

Unit 5: Go further with product image search

Unit 6: Go further with image classification

4. Google Developer Profile Creation

Once all the units were completed, a custom Google Developer Profile URL was created to

showcase the badges earned.

Steps to Create Profile:

Example URL: https://g.dev/ravikumar_ramcollege

(Note: The above URL is an example and does not exist.)

5. Badges Earned

Throughout the course, the following badges were successfully earned:

Badge Earned: Program neural networks with TensorFlow

Link: Get started with object detection
Completed all stages, followed by a quiz.
Badge Earned: Get started with object detection

Link: Go further with object detection
Completed all stages, followed by a quiz.
Badge Earned: Go further with object detection

Link: Get started with product image search
Completed all stages, followed by a quiz.
Badge Earned: Get started with product image search

Link: Go further with product image search
Completed all stages, followed by a quiz.
Badge Earned: Go further with product image search

Link: Go further with image classification
Completed all stages, followed by a quiz.
Badge Earned: Go further with image classification

1. Enter your name and college name (e.g., "Ravi Kumar from Ram College") and save your
profile.

2. A custom web address was created to display the earned badges, which can be used for
future reference or for internship evaluations.

https://developers.google.com/learn/pathways/get-started-object-detection?hl=en
https://developers.google.com/learn/pathways/going-further-object-detection?hl=en

These badges are now displayed on my Google Developer Profile, demonstrating my

competencies in AI-ML concepts and practical application using TensorFlow.

1. Program neural networks with TensorFlow
2. Get started with object detection
3. Go further with object detection
4. Get started with product image search
5. Go further with product image search
6. Go further with image classification

Unit 1 - Program Neural Networks with TensorFlow

Lesson: The Hello, World of Machine Learning

Overview

In this lesson, learners are introduced to the basic principles of machine learning (ML),

particularly how ML can infer rules from data rather than relying on explicitly programmed

logic. This is achieved through creating a simple model that recognizes activities such as

walking, running, and biking, based on speed data.

What You’ll Learn:

Example: Traditional Conditional Programming vs. Machine Learning

Traditional programming relies on explicitly written rules. For example:

However, when faced with a more complex activity such as golfing, writing conditions to infer

this activity is much harder, if not impossible.

Solution: Machine Learning

Instead of writing a complex set of conditional rules, machine learning enables you to build a

model that can "learn" from a dataset. You train the system to infer rules and relationships

between the input data (speed) and the output activity (walking, running, biking, or golfing).

Requirements:

Before starting this codelab, you should have:

The basics of machine learning.
How ML models are trained to infer patterns from data.
The difference between traditional programming rules and ML-based inference.

Basic programming knowledge, particularly in Python.

Tools:

Next Steps:

2. What is ML?

In traditional app development, you express rules in a programming language, which act on

data to provide answers. For example, in activity detection, the rules (code defining activity

types) process the data (movement speed) to determine the activity status (walking, running,

biking, etc.).

(Traditional Programming Diagram)

In machine learning (ML), the approach is different. Instead of defining explicit rules, you

provide data and labels (answers), allowing the machine to infer the rules that establish the

relationship between data and answers.

(ML Process Diagram)

Familiarity with libraries such as NumPy and TensorFlow.

Google Colaboratory (Colab): A browser-based IDE that already has TensorFlow and
other required dependencies installed. This makes it easy to start building and running
ML models without any local installation.
IDE (Optional): If you prefer using your own environment, ensure that Python,
TensorFlow, and NumPy are installed.

Start coding your first machine learning model by following the Colab notebook
provided. This lesson will guide you through creating a simple neural network that
recognizes patterns in the data.

For instance, in activity detection with ML, you gather and label data to indicate what walking

or running looks like. The machine learns the patterns from this data to infer the rules that

define each activity.

(ML Activity Detection Diagram)

This approach not only offers an alternative to traditional programming but also opens new

possibilities for scenarios that might be complex to handle with predefined rules.

In traditional programming, your code compiles into a binary program. In ML, the result from

data and labels is a model.

(Traditional Programming vs. ML Model Diagram)

The model is used at runtime by passing data through it, allowing the model to make

predictions based on the rules it inferred during training.

(Model Prediction Diagram)

3. Create Your First ML Model

Objective: Train a neural network to identify the relationship between sets of numbers.

Data:

As you look at them, you might notice that the value of X is increasing by 1 as you read left to right and the

corresponding value of Y is increasing by 3. You probably think that Y equals 3X plus or minus something.

Then, you'd probably look at the 0 on X and see that Y is 1, and you'd come up with the relationship

Y=3X+1.

In machine learning, this relationship can be discovered by training a neural network rather than coding

explicit rules. Begin by setting up your Python environment with TensorFlow, NumPy, and Keras:

Define a simple neural network using Keras. The network should have one layer with one neuron and an

input shape of one value:

X: -1 0 1 2 3 4

Y: 2 1 4 7 10 13

Compile the model by choosing an optimizer and a loss function. For this task, use stochastic gradient

descent (sgd) as the optimizer and mean squared error as the loss function:

Prepare your data using NumPy arrays:

Feed this data into the model and train it. The neural network will learn the pattern between X and Y

values, ideally discovering the formula Y = 3X + 1. This approach enables the model to infer the underlying

relationship from the data rather than relying on manually written rules.

4. Train the Neural Network

To train the neural network, use the model.fit function, which adjusts the model's parameters

over a specified number of epochs. During this process, the model makes predictions,

calculates the error (loss), and updates its parameters to minimize the loss.

Here’s how to train the model:

Initially, the loss value might be high, but it should decrease as training progresses. After a

few epochs, the loss will become quite small, indicating that the model is learning the

relationship between the X and Y values effectively.

You might not need all 500 epochs; in many cases, fewer epochs will be enough. For example,

the model might achieve satisfactory performance after just 50 epochs.

5. Use the model

You have a model that has been trained to learn the relationship between X and Y. You can use the

model.predict method to have it figure out the Y for a previously unknown X. For example, if X is 10, what

do you think Y will be? Take a guess before you run the following code:

You might have thought 31, but it ended up being a little over. Why do you think that is?

Neural networks deal with probabilities, so it calculated that there is a very high probability that the

relationship between X and Y is Y=3X+1, but it can't know for sure with only six data points. The result is

very close to 31, but not necessarily 31.

As you work with neural networks, you'll see that pattern recurring. You will almost always deal with

probabilities, not certainties, and will do a little bit of coding to figure out what the result is based on the

probabilities, particularly when it comes to classification.

Lesson: Build a Computer Vision Model with TensorFlow

About This Codelab

In this codelab, you’ll create a computer vision model to recognize clothing items using

TensorFlow. This guide will walk you through training a neural network with the Fashion MNIST

dataset, including model design, training, and evaluation.

Prerequisites

What You’ll Learn

What You’ll Build

What You’ll Need

1. Start Coding

Begin by importing TensorFlow and checking its version:

Load the Fashion MNIST dataset, which contains 70,000 28x28 grayscale images in 10

categories:

Normalize the image data by scaling pixel values to between 0 and 1:

Solid knowledge of Python

Basic programming skills

Train a neural network to recognize clothing articles
Experiment with different layers of the network

A neural network that identifies articles of clothing

Colaboratory: For a browser-based environment with all required dependencies.

Python: If using your local setup, ensure Python, TensorFlow, and NumPy are installed.

Install TensorFlow and NumPy.

2. Design the Model

Create a neural network with three layers:

3. Compile and Train the Model

Compile the model using an optimizer and loss function:

Train the model with the training data

4. Test the Model

Evaluate the model's performance on unseen test data:

Flatten: Converts the 28x28 image into a 1D vector.

Dense: Fully connected layers. The first layer has 128 neurons with ReLU activation, and

the second has 10 neurons with Softmax activation to predict 10 classes.

5. Exploration Exercises

6. Explore Callbacks

Implement callbacks to stop training once a certain accuracy is reached:

You’ve successfully built and trained your first computer vision model! To further enhance
your models, explore convolutional layers and pooling techniques in the next steps.

Exercise 1: Predict and print classifications for test images.

Exercise 2: Experiment with different numbers of neurons in the Dense layer to see how it
affects performance and training time.
Exercise 3: Remove the Flatten() layer to observe the resulting error due to data shape
mismatch.
Exercise 4: Adjust the number of output neurons to match the number of classes and
observe the impact.
Exercise 5: Add additional layers and evaluate their effect on model performance.
Exercise 6: Try training without normalizing the data and compare the results.

